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The system of equations of one-dimensional motlonof a conducting gas (plas- 
ma) under the effect of strong electromagnetic fields for the case of small 
magnetic Reynolds numbers Is reduced to one equation by means of an appro- 
priate selection of variables. Self-similar solutions of this equation are 
Investigated and a solution is also given for the problem of the motion of 
a conducting gas In an unlimited channel under the effect of an alternating 
electromagnetic field. 

1. Let us consider the one-dimensional unsteady motion of a plasma (con- 

ducting gas). In addition to the customary assumptlons for which the motion 

of a plasma may be considered one-dimensional, let us also assume that In 

the case under consideration the electromagnetic forces are much greater 

than the pressure forces so that the term containing the pressure gradient 

in the equation of motion may be neglected. There are appropriate estimates 

for when this assumption 

one-dimensional unsteady 

netlc forces are 

Is valid (e.g. In Cl]). Hence, the equations of 

motion of a plasma under the effect of electromag- 

g+ug+pg:o (1-l) 

&+p+-&H;, ari 4ns 
al:’ 

-- c (E+H) (1.2) 

Here t is the time, x the coordinate along the channel axis, p the 

density, u the plasma velocity, ,Y the magnetic and E the electric field 

Intensities, 0 the conductivity which will be considered constant and c 

the velocity of light In vacua. 
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Xn place of n let ua Introduce the new independent variable m by means 

of Formula 

M= (p&r- ~~c~~s~~~ 6.3) 
0 0 

where pee and ho are the values of the density p and the velocity u 

atx=O. !J!he physical meaning of the Lagrange coordinate m may be cla- 

rified by noting that the first integral in (1.3) is the mass of gas refer- 

red to unit cross-sectional area of the channel whlah is between the Initial 

section and the section with the coordinate x at a given time t , The 

second integral in (1.3) yields the whole mass of gas which has flowed into 

the channel through the x - 0 section within the time from t = 0 to the 
considered time =8 . Therefore, m is the negative of the mass of gas 

included between the particles in the section of the channel with coordinate 

x at time t and the gas particles which passed the origin at time t - 0. 

Differentiating (1.3) with respect to x and t we obtain 
x 

am 
yzjg = p, 

am ap 
x-= at s -dx - po$z~~ = - pu 

0 

Here the continuity 

with the res.Ilt that 

equation (1.1) has been used for the last relation 

Remarking also that 
5 xapdx z = - P” + Poo~ao 
0 

8X 1 1 8X am ax - --- am TGqZ=p z== --_-----_~ 
at am 

we transform (l.l), (1.2) to the Independent t and m variables 

This system OS equations may easily be reduced to one equation. Let us 

execute this transformation in the case when the magnetic Reynolds number is 

such that the Induced magnetic field may be neglected in comparison with the 

external magnetic field. 

Eliminating dH/arn in this case, we obtain In place of (1.5) 

W) 

where E and ff are gi-fen functions of x and t 

Let us now introduce a new desired function of x . Using (1.4) we obtain 

that the first equation of (1.6) will be satisfied identically and the second 

will yield 
&‘x OH= cE 

( 

ax ax --- - .@i-=T H ) at am (1-V 

Sf the velocity distribution uc and the density pc of the plasma along 



the length of the channel are given at the Initial Instant, then m(xc) can 

be determined from (1.3). Araluatlng the Inverse function x,(m) and noting 

that 1~ = X, #- , we obtain the Initial conditions In the form 

z = 2s (m), zt' = us (m) for t = 0 U-8) 

In the general case of a bounded channel, It Is necessary to assign bound- 

ary conditions In addition to the initial conditions (1.8). Assuming that 

the entrance to the channel Is at the x = 0 section, It Is possible to give 

the velocity and discharge (density) of the gas as a function of the time as 

the boundary conditions at JC = 0 . 

Assignment of these quantities permits the determination of m = m(t) at 

x=0. 

Hence, the boundary conditions In the m and t variables will be 

5= 0, x1' = u&t) for m = m(t) 

Equation (1.7) Is a nonlinear second order equation In the unknown func- 

tion x . It Is very difficult to Investigate its solution In the general 

form. 

Hence, let us first consider In detail that particular case when the 

motion 1s such that E>)c-’ uH and the external electromagnetic field 

depends only on time. Then, the second term on the right-hand side of (1.7) 

may be discarded as compared to the first. We hence obtain 

Px/ ata = f(t)axlh (W 

where for brevity we have Introduced the notation 

(0 1 4 E W(t) = f(t) 

2. Let us consider self-similar motions first. Let the n dimensional 

constants ~,,...,a, enter into (1.9), the boundary and Initial conditions. 

Let us take the quantities JC, t and m as independent dimensions. Wlth- 

out llmltlng the generality, we may assume that a, contains the dimension 

x . Then combining cp, . . ..a. with c, It Is possible to obtain n - 1 new 

constants a,',...,a, ' Instead of the sa,...,cnr where these former will 

not contain the dimension JC . In order that (1.9) should adsflt self-slml- 

lar solutions, It Is necessary that among the constants as,',...,a.' there 

be at least one with an Independent dimension [2]. The function f(t) in 
(1.9) may be represented as 

where the dimension of the constant IS [a,] = [m/t*] and I, Is a non- 

dimensional function. Since the dimensions of co and to are Independent, 

the self-slmllar solutions will exist only when y(t) has the form 

f(t) = kt” (2 1) 
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Furthermore, without carrying out computations, let us note that if the 

functions in the Initial or boundary conditions are not identically zero, 

they sould have a definite form so that no new constants with independent 

dimension would appear and the solution would still be self-similar. Namely, 

the Initial and boundary conditd.ons should be 

Oil - 
z = qmZ+a, q' = a,mi& for t = 0 

(2.2) 
5 = 0, xt’ = at’ for In = a.#+= 

Hence (1.9) will have a self-similar solution of the form 

x = a@+1 cp (A) (2.3) 
where cp is a nondimensional function and the nondimensional variable X 

equals 
(2.4) 

Substituting (2.3) into (1.9) we obtain an ordinary differential equation 

for the determination of the function m(i) 

( ) y a A%$ - [1 + T (20 + 1 - ‘+) I]@ + f!n (f! + 1) cp = 0 (2.5) 

The solution of (2.5) contains two arbitrary constants. Hence, It is 

impossible to satisfy two boundary and two initial conditions at the same 

time if the constants therein are given arbitrarily (i.e. the motion will not 

be self-similar ) . The question Is simplified in two cases. Firstly, if the 

motion occurs In an unbounded channel. This problem will be considered below 

since a solutlon even for non-self-similar motion has successfully been 

obtained for the unbounded channel. Secondly, when there Is no plasma In 

the channel at the Initial instant, i.e. the initial parameters are zero. 

A number of problems of practical Interest concerning the Initial period of 

operation of a plasma-acceleration channel when the channel starts to be 

filled with plasma and the electric and magnetic fields grow from zero after 

the system has been connected, reduces to this case. 

Reducing the boundary conditions (2.2) to nondimensional form, we obtain 

two boundary condltlons for cp 

cp = 0, 
k 

9’ = - (2 + a) LJ 
for h = 9 = I.0 (2.6) 

As an example, let us find the final solution of the following problem: 

plasma starts to flow into a channel at time t = 0 with the velocity 

u = ata and the constanc density p . The electric and magnetic fields grow 

such that y(t) = 1.5t . 

From (1.3), (2.1), (2.2), (2.4) and (2.6) we find that in the example 

considered we will have 

a = 1, B = 2, k= 1.5, h, = - V3ap 



Equation (2.5) and boundary conditions (2.6) take the form 

4h*cp" - (1 + 6h)cp' + 6q~ = 0 

cp = 0, cp' = - 142 LJ) for h = ho 

The general integral of (2.7) will be 

(2.7) 

w3) 

r: 

'p =(I + 6h)[C,\ )* 
1.5 e-1i(4)i)dh 

(2.9) 
ho 

where 4, and Ca are arbitrary constants. 

Determining their values from the boundary 

C, = - 0.5 (1 + 6h,) h;a.5e1'(4'*), 

conditions (2.81, we obtain 

c, = 0 (2.10) 

Substituting (2.9) and (2.10) into (2.3), we find the desired expression 

for x 

5 = &43 (1 + 64 h1'5 e-1/(4h) & 

A, (I+ W' 

3. Let us now carry out the solution of the problem of plasma mot&n In 

an unbounded channel In the general case. Let the velocity distribution and 

the density along the channel length be known at the Initial Instant In a 

channel unbounded at both ends. It is required to determine the motion orlgl- 

natlng from this Initial state under the effect of a given constant eiectro- 

magnetic field along the length of the channel but which changes with time. 

As has been shown above, the question reduces to seeking the Solution Of 

(1.9) which will satisfy the Initial conditions (1.8). Let us seek the solu- 

tion in the form of the infinite series 

5 = ; [&n)(m) q%(t) + &I@) (4 Xn WI (3.1) 
*=Cl 

where xc@) and u,,@( are the nth derivative of xJ and uc . 

Substituting (3.1) into (1.9), we find that !‘or (3.1) to be a soiutlon it 

is necessary that 

q&I = i dts f (t) 91.4 [Et, X!‘ = c &if W x,_,dt 
i 

(3.2) % 

and we find from lhe’initlal conditions (1.8,” 

$0 = 1, x0 = t (3.3) 

Formulas (3.1) to (T.31 yield the solution of the formulated problem in 

the general case. Let us illustrate their u8e In a specific example. 

At t = 0 let the plasma velocity be u = 0 and let the denslty be 

distributed according to the law 

p=l/2JGi for r>o, p=O far z<o 
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It 

state 

f=R 

tie calculate the connection between x and m at t = 0 by means of 

(1.3). $erformlng the computations we obtain the Initial conditions In the 

considered example In the form 

x = km2, 51 ‘=O for t=o (3.4) 

By means of (3.2) we calculate 

0.11. Wm-Zdlkovlch 

Is required to determine what motion will originate from this Initial 

under the effect of a periodic electromagnetic field, i.e. for 

sin wt . 

q1 = A~-~(ot - sin it) (3.5) 

q2 = l/e A2w-’ (17 - 2w2t2 - 8wt sin wt - 16 cos wt - cos 2wt) 

It is necessary to evaluate Y, for n 2 3 and X. since for the given 

boundary conditions (3.6) 

50 ’ = 2km, x0” = 2k, xo(n) ze 0 for n > 3, Us@) FE 0 for n&O 

Substituting (3.4), (3.5) and (3.6) Into (3.1), we obtain the final for- 

mulas describing the plasma motion 

z = k tm2 + 2Aw2 (ot - sin ot) m + lId~%-~ (17 - 

- 2w9ta - 8otsin ot - 16 cos ot - cos 2wt)l (3.7) 

Differentiating (3.7) with respect to time, we calculate the particle 

velocity 

u = k[2Aw-1 (1 - cos at) m - 

- A2ws (ot - 2 sin ot + 2 ot cos ot - 1 / 2 sin 20t)I (3.8) 

Eliminating m from (3.7) and (3.8), we may find the dependence of the 

particle velocity on the coordinate x . In order not to write down the ank- 
ward and poorly Illustrative formulas, let us perform these computations only 

for the times t = (2n j- 1)n / wand t = 2nnjo. Omitting the Intermediate 

formulas we arrive at the final result 

l&=$4 $“+z& 
{ ( 

[3 (2n + 1)s Jc2 - 161)” - g (2n + 1) ?q (3.9) 

for t = Pn + 1) Jz 
0 

UZZ- 6kA2nrur3 for t = 2nnW (3.10) 

It 1s seen from (3.9) and (3.10) that the plasma will perform oscillatory 

motion in the sense that the particle velocity periodically changes sign. 

However, these will not be oscillations of the particles around some fixed 

equilibrium position. In fact, It follows from (3.7) and the Inltlal condl- 

tlons (3.4) that a particle at the point xc In the right half of the than- 

nel at the lnltlal instant would, after Q periods, I.e. at t = &n/w have 

deviated from its original posltlon by 
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